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The system of equations which governs the nonstationary three-dimensional motion of 
polytropic gas is given by 

Ou + (t/p)Vp = O, DO -~- O div u = O, O p  + ? p  div u = . 0 ,  (1 )  

where u is the velocity vector with the components u, v, w; p is the pressure; p is the 
density; y is the adiabatic index; D = ~/~t + u'V is the total-derivative operator. 

The basic Lie transformation group was found in [i] and is consistent with such system. 
The basic Lie algebra operators for this group are as follows: 

X 1 = OIOt, X~ = O!bx, X3 = O/by, X4 = O/Oz, 

X 5 = tO/Ot + xOlOx + yb l@ + zOIOz, 

XG = tO/Ox + a/Ou, X~ = tO/Oy + 8/Ov, 

Xs = tO/Oz + O/Ow, X9 = tO/Ot - -  uO/Ou - -  vO/Ov - -  

- -  wO/Ow + 2pO/Op, X10 = zO/Oy - -  yO/Oz + wO/Ov - -  

- -  vO/Ow, X l t  = xO/Oz - -  zO/Ox + uO/Ow - -  wO/Ou, 

XI~ = VO/Ox - -  x8 l@ + vOlau - -  uOlav, 

XI~ = pO/Op + p~/Op. 

The g roup  i s  s a i d  t o  be  G~3 and i t s  L i e  a l g e b r a  L t a .  The o p t i m a l  s u b g r o u p  s y s t e m s  o f  
t h e  g r o u p  G~s were  o b t a i n e d  i n  [ 2 ] .  I n  T a b l e  1 t h e  b a s i c  o p e r a t o r s  a r e  shown f o r  t h e  o p t i m a l  
s y s t e m s  o f  t h r e e - p a r a m e t e r  s u b g r o u p s  o f  t h i s  g r o u p ;  howeve r ,  t h e  b a s i c  o p e r a t o r s  f o r  t h e s e  
subalgebras in which the transfer operators in the spatial variables appear as generators 
are not shown since such subalgebras will not be considered by us (~, 8, 6, e, V, ~ are 
arbitrary constants). For the adiabatic index y = 5/3 the base group is augmented and one 
adds to the operators 

XI~ = t20/Ot + txO/Ox -i-~tyO/Oy + tzO/Oz + (x - -  tu)O/Ou + 

+ (y - -  tv)O/Bv + (z - -  tw)O/Ow - -  5tpO/Op - -  3tpO/Op. 

The augmented group is denoted by G~4 and the corresponding Lie algebra by L~4. 

The algebra L=4 is not solvable. It possesses a nonvanishing radical which can be ex- 
pressed by means of the operators X2, X3, X~, X6, XT, Xo, X~3. Since the group Ga4 is un- 
solvable one cannot apply the algorithm described in [3] for finding optimal subgroups. 
Nevertheless, by using the optimal systems of subgroups of the group G~3 enumerated in 12] 
one is able to find the optimal systems of the subgroups of the group G~. The following 
proposition is now employed. 

p~Qposition. Any subalgebra Lm of dimension m 2 2 of the algebra L~4 is either a sub- 
algebra of the algebra L~3 or it contains a subalgebra Lm-a of dimension m -- I which is a 
subalgebra of the algebra L~. 

i 
Indeed, let us consider the basic operators of the algebra Lm: Y~ = a X i ~ = i, 2, ..., 

m (summation with respect to i is from i to 14). If a~ 4 vanish for any ~, then Lm~ L1s. 
For some 8 let aB t~ # 0. It can be assumed without loss of generality that a mr4-- i. One 
now replaces the first m -- 1 operators by the operators Y'~ = Y~ -- a~Ym (B = i, 2, ..... 

! T ! 
m -- i). The operators Y :, Y 2, ..., Y m~1 then form a subalgebra of dimension m -- 1 for 
the algebra L~a. 
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X9 
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Consequently, by taking the complement of each subalgebra of dimension m- I of the 
optimal system of the algebra L~a to the subalgebra of dimension m with the basic operators 
y, y, 

i, 2, .... Y'm-~, Ym (am ~= i), by simplifying the obtained operators by the inner-auto- 
morphism transformations of the group G~,, and finally by eliminating similar subalgebras 
from the set of the obtained subalgebras and of the subalgebras of dimension m of the alge- 
bra L1s one obtains an optimal system of m-parameter subgroups (not in [2]) of the group GI~. 

Thus, optimal systems have been obtained of the three-parameter subgroups of the group 
GI~. In Table 2 the basis operators of these subgroups are shown; the basis operators for 
the subgroups similar to the subgroups of the groups G~3 are not shown since they were enum- 
erated in [2], as already mentioned; the subalgebras in which the transfer operators in the 
spatial variables appear as generators are not shown either since the invariant solutions 
obtained on the corresponding subgroups reduce to the solving of the equations of the two- 
dimensional gasdynamics analyzed in [3, 4]. As in [i, 3, 4], the operator X~, which is the 
center of the algebra L~, is not considered (a, ~, ~ are arbitrary constants). 

We now proceed to find some invariant solutions of the system (i). First, the case of 
an arbitrary adiabatic index is considered. The solutions are obtained on the three-param- 
eter subgroups of the group G1a (see Table 1). One notes that when considering the solu- 
tions on subgroups containing transformations with the operator X~o it is advisable to make 
use of the cylindrical coordinate system, 

x, r = ~/y~ -}- z 2, q) = a rc tg  (y/z), 

v r = v s i n ~ q - w c o s ~ i ~ ,  v = v c o s  T - w s i n %  

S u b g r o u p  1:  X~ + X6, 2X5 - - X . ,  X~o.  The i n v a r i a n t  s o l u t i o n  i s  g i v e n  b y  

u = rl/2U(~) -[- t, 1) r = rl/~V(~), i)~ = rl/2W(~), 

p = r-~R()~), p = P(~),  

where I = (t a -- 2x)/r. 

By substituting these expressions into the system (1) one finds the system S/K, 

2 U U '  + V(~.U" - -  U/2) q- 2 P ' / B  - -  i = O, 

2 U V '  q,- V(EV' - -  V/2) -t- W ~ q- (~./R)P' = O, 

2 U W '  + V[~.W' - -  (3/2)W] = O, 2 (UR) '  + ;~(VR)' - - V R / 2  = O, 

2 U P '  + ~.VP' -{- ? P [ 2 U '  - -  (3/2)V if- ~'.V'I = 0 

(here and in our further considerations the prime denotes differentiation). 

By setting V = 0 one can find a particular solution of the system, namely, 

U = 0 ,  V : . : O ,  W:::= [--kt21 v'a , l~ .= 21 '~ 

(P(%) i s  an  a r b i t r a r y  f u n c t i o n  %). 
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TABLE 2. 

X, 

X~--X~ 

X~+X, 

X~, 

=X~--=X,+ X,o 
X~q-Xx, 

X~--X~ 

X~ 

X~ 

X,--2.q-X,, 

x,+x,~ 

x , + x ~ ,  

X~ 
X~--X~+Xx~ 
X~+X,~ 

aX,+Xx~ 

X~ 

ax~+gx~+fx~+xt, 

The corresponding solution of the system (i) can be written as follows: 

9 = (21r)P'((t  2 - -  2x)/r) ,  p = P ( ( t  = - -  2x)lr) ,  

w h e r e  P i s  a n  a r b i t r a r y  f u n c t i o n .  

Subgroup 2: X2, --~X, + X1o, Xs- ~X,. The invariant solution is given by 

p = r - ~  e - ~  R(~), p = P(~), 

where X = x/r. The functions U, V, W, R, P are solutions of the following system of ordinary 

differential equations: 

u'(u ~ ~v) " u ( ~ v  + =w)  + P ' IR  = o, 

V ' ( U  - -  ~V)  + V ( ~ V  -9 o~W) - -  W ~ - -  ~ P ' / R  = O, 

w ' ( u  - ~v) + w[([~ + t ) v  + ~ W l  = o, 

(uR) '  - k(VR)'  -+- tt [(t --  ~)V ~ a W l  = O, 

P ' ( U  -- ~V) + vP[U'  --  ~V' + (fi + t )V + ~W]  = O. 

One notes a simplification in the case ~ = --2, ~ = 0. Then the last two equations have the 

following integrals: 

(U  ~ ~.V)R = C .  P = & ( U  - -  kV)- ,r .  

where Cx, Ca are arbitrary constants. 

In the case ~ = --2, W = 0 the third equation is satisfied identically, and the last two 
equations possess the same integrals. 

Subgroup 3: X~, X~ ~ X,, -~X, + Xxo. Invariant solutions ace given by 

u =: e ~ + ~  0"(~)i v~ = e~+-~V(~), v~ = e ~ + ~  W(~), 

t' - -  e - ~ ( ~ + ~ )  R ( ~ ) ,  p = P ( ~ ) ,  ~ = r .  

By inserting these expressions into th~ system (l), the equatlons 

u ' v  + u I U  + (,~/z,)wl = o ,  

V ' V  -~- V [ U  -,~ (=/~,)Wl - -  ( t / k ) W  = + P ' l n  --- O, 

w ' v  + w i u  + (al~,)w + (i/),)Vl = o, 

( v~) '  - -  ~ [ u  + ( ~ l ~ ) W -  O/~,)Vl = o, 

V P  -~- ? P I U  q- (a/~.)W-~- ( t l~ )V  + V ' !  = o, 
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are obtained. Setting V = 0, the following solution of the system (I) can be obtained: 

u = - -e=~e -= (odrl/=)(P'lR)l/z, v, = 0, (3)  

v~ = e=r ~ ( r P ' / R )  1/2, 9 = e-2(c'~+~) R(r) ,  p = P(r) ,  

where R and P are arbitrary functions. 

Subgroup 4: X6, aX5 + X,, ~X5 + X:o. Invariant solution is given by 

u = (l/t)(rU(~.) + x ) ,  v r --  (r/t)V(L), vr = (r/t)WO~), 

p = ( t V r D R ( ~ ) ,  p = P(~,), ~ = r ~ + ' t - ~  e - ~ .  

The system S/H is as follows: 

~.U'[(o~ + I)V - -  ~ - -  I]W] + U V  = O, 

~,V'[(cz + t )V - -  cz - -  [3W] + V ( V - -  t) - -  W 2 + (~ + t ) ~ P ' / R  = O, 

x w '  [(~ + i ) v -  ~ - ~Wl + w ( 2 v -  t )  - f ~ p ' / R  = o, 

3R - -  ~ R '  + (~ + i ) ~ ( v R ) '  - ~ ( w R ) '  = 0, 

XP'[ (=  + l ) V - -  = - -  ~W] + ? P [ i  + 2V + (= + l )kV'  - -  p k W ' ]  = 0. 

By setting a = --l, ~ = 0, W = 0 the exact solution can be obtained of the system (1), namely, 

u = (r/t)C1/(C 2 + t) + x/ t ,  v~ = r/(C2 + t), 

v,  := O, p = Cz/tr z, p = C4/tv(t + C~)2v, 

where C~, C2, C~, C, are arbitrary constants. 

Subgroup 5: X6, X~, X~ + X, (contains no transformations with the operator Xxo). The 
invariant solution is as follows; 

u = [U(L) + x] / t ,  v = [V(X) + Y - -  In t l / t ,  

w = W(k) / t ,  9 = t2R(L), P = P(L),  k = z. 

The substitution into the system (i) results in the equations 

w u '  = o, w v '  = l ,  - w  + w w '  + p ' / ~  = o, 

4 R  + ( W B ) '  = O, W P '  + ?P(2 + W')  = 0. 

It follows from the first equation that either W = 0 or U' = 0. As regards the second equa- 
tion one adopts U = Cx (C~ is a constant), W # 0. By setting W = A% (A is a constant) one 
obtains the following partial solution of the system (i): 

u = (x + CO~t, v = y / t  + (ln z ) /A t  - -  ( l n  O/t, 

w = Az / t ,  9 = C #  ~z-~(z+~)/(~-~), P = C~z s~/(~-z), 
where 

A = (4 - -  2?)/(? + t) ;  Cs = 2C~(l - -  ?)(2 - -  ?)2/?(i + ?)2; 

C~, C2 b e i n g  a r b i t r a r y  c o n s t a n t s .  

I t  i s  n o t e d  t h a t  t h e  s y s t e m  S/H on  t h e  s u b g r o u p  <X6, XT, X, )  c a n  be  i n t e g r a t e d  c o m p l e t e l y .  

The s o l u t i o n  o f  t h e  s y s t e m  ( l )  i s  t h e n  g i v e n  by  

u = (x + AO/ t ,  v = (y + A~)/t ,  w = (z + A3)/t ,  ~4) 

P = A~ t-3, P = A~ t-3v 

(Ax . . .  A~ b e i n g  a r b i t r a r y  c o n s t a n t s ) .  

By carrying out the translation in the space coordinates the above solution can be 
reduced to a simpler form, 

u = x/ t ,  v ~ y/ t ,  w := z/t ,  9 == C~ t-~, P = C2 t-3v, 

where Cz, C2 are arbitrary constants. 0f course, the obtained solution is self-consistent. 

We now go over to the case of the adiabatic index y = 5/3. The solutions will be found 
on some of the subgroups shown in Table 2. 
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Subgroup 6: X6, aX5 -- ~X, + X,o, X~4. The invariant solution is given by 

u = [rU(~,)/t + x l / t ,  Vr = [rV(~)/ t  + r l / t ,  

% = r W ( k ) / t  2, p = R(~,)/r2t, p = P(~,)/#,  

= In  (r/t) - -  a r  

The sys:tem S/H can be written for this solution as 

u ' ( v - -  o~w) + u v  = o, v ' ( v  + = w )  + v ~ + W 2 + p ' / R  = o, 

W ' ( V -  a W )  + 2 V W  - -  a P ' / R  = O, (VR)"  = a ( W B ) ' ,  

P ' ( V  - -  2 W )  + (5 /3 )P(2V  + V" - -  czW')  = O. 

By setting ~ = 0, V = 0 one finds that W 2 = P'/R; the latter yields the following particular 
solution of the system (i): 

u = U(r / t ) / t  + x / t ,  v~= r/t ,  ( 5 )  

v~ = (rP' / tR~l /2r / t  2, P = R(r/ t ) /r~t ,  P = P( r / t ) t  -~, 

where U, R, P are arbitrary functions. 

Subgroup 7:X5 -- X,, X~o, XI + X~,. The invariant solution is 

u = x[U(~) + t] / ( i  + tD, v~ = r[V(~) + t l l ( l  + t~), 

v~ = xW(~) / ( t  + t ' ) ,  0 = x l ( t  + tD-~/~R(~), 

p = p (~) ( l  + t~)-s/~, ~ = x/r, 

and the system S/H is as follows: 

~ , u ' ( u  - v )  + u 2 + (~/R)P'  + t = o, 

%V'(U- -  V) + V ~ q- ~ 2 W 2  - -  ~ P ' / R  + I = O, 

~ W ' ( U - -  V) + W ( U  + V) = O, 

( U R ) '  - -  ( V R ) '  + R ( 2 V -  V) /~  = O, 

~ P ' ( U  - -  V) + ( 5 / 3 ) P ( U  + ~ U '  + 2 V  - -  ~V ' )  = O. 

The following set of functions U ~ Y = 0, W a ~ i + 1/% 2 , R = _%pI is one of the particular 
solutions for this system. In this case the solution of the system (i) is given by 

u = x t / ( l  -}- t2), v~ = r t / ( l  -4- t2), 

v~p = +__(V'r ~ + x2) / ( l  -{- t~), p = - p ' ( x / r ) / x r V 1  q- t 2, ( 6 )  

p - -  ( t  -4- t2)-a/2P(x/r) 

(P is an arbitrary function). 

Let us consider the case in which the system S/H can be completely integrated. This is 
possible for the subgroup <X6, XT, X2 + X~,>. The invariant solution on this subgroup is 

u = [U(~) + x + t / t l / t ,  v = [V(~) + gl / t ,  

w = [W(~) + zl / t ,  p = R(~)t  -3, p = P(~)t -5, ~ = z/t. 

Having solved the system S/H and by using the space-coordinates transfer as well as by elimin- 
ating some integration, constants one obtains the invariant solution, 

u = Clz / t  ~ + x / t ,  v ' =  g/ t ,  w = z / t ,  p = C2t -~, p = C3t -~, 

where C~, Ca, C3 are arbitrary constants. 

The system S/H is also completely integrated for the subgroup (X~, XT, X~>. The solu- 
tion of the system (i) is then as follows: 

u = (C, + x ) / t ,  v = (C.z + g ) / t ,  w - -  (C.~-~-z)/ t ,  P = C~ t-~, P = C5 t-~ 

[this solution is obtained by using (4)]. 

We analyze in more detail those of the obtained solutions of the system (i) in which 
arbitrary functions appear. For these solutions the contact characteristics are found which 
are specified by an equation of the form 

x = f~(r, q)) -~- l~(t), r ----- ]~(r --}- /2(t), qo = l~(t). ( 7 )  
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It is the contact characteristics that are analyzed since it is convenient to join the ob- 
tained solutions to other solutions or to replace them by impenetrable surfaces. The fol- 
lowing surfaces are contact characteristics for the solution (2): x = f(r) + t=/2, r = C (f 
is an arbitrary function, C is an arbitrary constant). As regards coordinate system in 
motion along the x axis, with constant acceleration equal to i, the gas motion governed by 
this solution will be stationary. It should be mentioned that the surfaces x = C1r + t2/2, 
which are contact characteristics, are isobaric s~rfaces at the same time. 

The solution (3) is now considered; it governs the stationary gas motion. In this case 
the contact characteristics are given by the equations x =--~ + f(r), r = C (f is an arbi- 
trary function, C is an arbitrary constant). The pressure on the cylindrical surfaces r = C 
is in this case constant. Employing surfaces specified by the equations x = ~, r = CI, r = 
C2 one can obtain a body in the form of a screw-like tube with rectangular cross section. 
The obtained solution gives the distribution of the flow parameters of the gas for the flow 
inside such a tube. 

The contact characteristics for the solution in (5) are specified by the formula r = Ct 
(C is an arbitrary constant). If in the solution one sets U = C~ then the expression can be 
written down for another family of characteristics: x = C2r + Cst -- C: (C:, C2, C3 are arbi- 
trary constants). If one selects the function P such that P(A) = 0 (A is a constant) the 
solution under consideration can be regarded as the solution of the problem on the scattering 
into a cavity of a cylindrical gas volume with a given initial velocity fieldand with an 
initial distribution of density and pressure. The boundary of this volume is in motion ac- 
cording to the rule r = At. 

For the solution (6) the surfaces given by the equation x = C~r + Ca/!+ t 2 are the 
contact characteristics of the type as in (7) (C:, C2 are arbitrary constants). 

The author would like to express his gratitude to N. Kh. Ibragimov for his scientific 
guidance as well as for his valuable advice and comments and to L. V. Ovsyannikov for dis- 
cussing the obtained results. 
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